Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762330

ABSTRACT

Interleukin (IL)-8 plays a vital role in regulating inflammation and breast cancer formation by activating CXCR1/2. We previously designed an antagonist peptide, (RF16), to inhibits the activation of downstream signaling pathways by competing with IL-8 in binding to CXCR1/2, thereby inhibiting IL-8-induced chemoattractant monocyte binding. To evaluate the effect of the RF16 peptide on breast cancer progression, triple-negative MDA-MB-231 and ER-positive MCF-7 breast cancer cells were used to investigate whether RF16 can inhibit the IL-8-induced breast cancer metastasis. Using growth, proliferation, and invasiveness assays, the results revealed that RF16 reduced cell proliferation, migration, and invasiveness in MDA-MB-231 cells. The RF16 peptide also regulated the protein and mRNA expressions of epithelial-mesenchymal transition (EMT) markers in IL-8-stimulated MDA-MB-231 cells. It also inhibited downstream IL-8 signaling and the IL-8-induced inflammatory response via the mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) pathways. In the xenograft tumor mouse model, RF16 synergistically reinforces the antitumor efficacy of docetaxel by improving mouse survival and retarding tumor growth. Our results indicate that RF16 significantly inhibited IL-8-stimulated cell growth, migration, and invasion in MDA-MB-231 breast cancer cells by blocking the activation of p38 and AKT cascades. It indicated that the RF16 peptide may serve as a new supplementary drug for breast cancer.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , MDA-MB-231 Cells , Phosphatidylinositol 3-Kinases/metabolism , Interleukin-8/genetics , Interleukin-8/pharmacology , Signal Transduction , Breast Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Triple Negative Breast Neoplasms/pathology
2.
J Microbiol Immunol Infect ; 56(5): 1026-1035, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586915

ABSTRACT

BACKGROUND: Acinetobacter nosocomialis (A. nosocomialis) is a glucose non-fermentative, gram-negative bacillus that belongs to the Acinetobacter calcoaceticus-baumannii complex. In recent years, studies have found an increased clinical prevalence of A. nosocomialis. However, given the increasing trend of antibiotic resistance, developing new antibacterial agents is vital. Currently, research regarding bacteriophage therapy against A. nosocomialis is only limited. METHODS: Two A. nosocomialis bacteriophages, TCUAN1 and TCUAN2, were isolated from sewage. Experiments such as transmission electron microscopy (TEM), host-range analysis, and sequencing were performed to determine their biological and genomic characteristics. TCUAN2 were further subjected to in vivo experiments and their derived-endolysin were cloned and tested against their bacteria host. RESULTS: Transmission electron microscopy revealed that TCUAN1 and TCUAN2 belong to Myoviridae and Podoviridae, respectively. Both phages show a broad host spectrum and rapid adsorption efficiency. Further biological analysis showed that TCUAN2 possesses a shorter latent period and larger burst size compared to TCUAN1. Because TCUAN2 showed a better antibacterial activity, it was injected into A. nosocomialis-infected mice which resulted in a significant decrease in bacterial load levels in the blood and increased the mice's survival. Finally, genomic analysis revealed that the complete nucleotide sequence of TCUAN1 is 49, 691 bps (containing 75 open reading frames) with a G + C content of 39.3%; whereas the complete nucleotide sequence of TCUAN2 is 41, 815 bps (containing 68 open reading frames) with a G + C content of 39.1%. The endolysin gene cloned and purified from TCUAN2 also showed antibacterial activity when used with a chelator EDTA.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Sepsis , Animals , Mice , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology
3.
Nutrients ; 15(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111128

ABSTRACT

Excessive alcohol consumption can lead to serious health complications, with liver and neurological complications being the most important. In Western nations, alcoholic liver disease accounts for 50% of mortality from end-stage liver disease and is the second most common cause of liver transplants. In addition to direct damage, hepatic encephalopathy may also arise from alcohol consumption. However, effective treatment for liver disease, as well as neurological injury, is still lacking today; therefore, finding an efficacious alternative is urgently needed. In the current study, the preventive and therapeutic effects of Schisandrin B (Sch B) against ethanol-induced liver and brain injuries were investigated. By using two treatment models, our findings indicated that Sch B can effectively prevent and ameliorate alcoholic liver diseases, such as resolving liver injuries, lipid deposition, inflammasome activation, and fibrosis. Moreover, Sch B reverses brain damage and improves the neurological function of ethanol-treated mice. Therefore, Sch B may serve as a potential treatment option for liver diseases, as well as subsequential brain injuries. Furthermore, Sch B may be useful in preventive drug therapy against alcohol-related diseases.


Subject(s)
Brain Injuries , Lignans , Mice , Animals , Ethanol/adverse effects , Liver , Lignans/pharmacology
4.
Pathogens ; 12(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36986363

ABSTRACT

Schistosomiasis is a major global health problem. Schistosomes secrete antigens into the host tissue that bind to chemokines or inhibit immune cell receptors, regulating the immune responses to allow schistosome development. However, the detailed mechanism of chronic schistosome infection-induced liver fibrosis, including the relationship between secreted soluble egg antigen (SEA) and hepatic stellate cell (HSC) activation, is still unknown. We used mass spectrometry to identify the SEA protein sequences from different infection weeks. In the 10th and 12th infection weeks, we focused on the SEA components and screened out the special protein components, particularly fibrosis- and inflammation-related protein sequences. Our results have identified heat shock proteins, phosphorylation-associated enzymes, or kinases, such as Sm16, GSTA3, GPCRs, EF1-α, MMP7, and other proteins linked to schistosome-induced liver fibrosis. After sorting, we found many special proteins related to fibrosis and inflammation, but studies proving their association with schistosomiasis infection are limited. Follow-up studies on MICOS, MATE1, 14-3-3 epsilon, and CDCP1 are needed. We treated the LX-2 cells with the SEA from the 8th, 10th, and 12th infection weeks to test HSC activation. In a trans-well cell model in which PBMCs and HSCs were co-cultured, the SEA could significantly induce TGF-ß secretion, especially from the 12th week of infection. Our data also showed that TGF-ß secreted by PBMC after the SEA treatment activates LX-2 and upregulates hepatic fibrotic markers α-SMA and collagen 1. Based on these results, the CUB domain-containing protein 1 (CDCP1) screened at the 12th infection week could be investigated further. This study clarifies the trend of immune mechanism variation in the different stages of schistosome infection. However, how egg-induced immune response transformation causes liver tissue fibrosis needs to be studied further.

5.
J Microbiol Immunol Infect ; 56(3): 477-489, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36964051

ABSTRACT

BACKGROUND: In most developing or undeveloped countries, patients are often co-infected with multiple pathogens rather than a single pathogen. While different pathogens have their impact on morbidity and mortality, co-infection of more than one pathogen usually made the disease outcome different. Many studies reported the co-infection of Schistosoma with Salmonella in pandemic areas. However, the link or the underlying mechanism in the pathogenesis caused by Schistosoma-Salmonella co-infection is still unknown. METHODS: In this study, Salmonella typhimurium (S. typhimurium) was challenged to Schistosoma mansoni (S. mansoni)-infected mice. Further experiments such as bacterial culture, histopathological examination, western blotting, and flow cytometry were performed to evaluate the outcomes of the infection. Cytokine responses of the mice were also determined by ELISA and real-time quantitative PCR. RESULTS: Our results demonstrated that co-infected mice resulted in higher bacterial excretion in the acute phase but higher bacterial colonization in the chronic phase. Lesser egg burden was also observed during chronic schistosomiasis. Infection with S. typhimurium during schistosomiasis induces activation of the inflammasome and apoptosis, thereby leading to more drastic tissue damage. Interestingly, co-infected mice showed a lower fibrotic response in the liver and spleen. Further, co-infection alters the immunological functioning of the mice, possibly the reason for the observed pathological outcomes. CONCLUSION: Collectively, our findings here demonstrated that S. mansoni-infected mice challenged with S. typhimurium altered their immunological responses, thereby leading to different pathological outcomes.


Subject(s)
Coinfection , Salmonella Infections , Schistosomiasis mansoni , Schistosomiasis , Animals , Mice , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/pathology , Salmonella typhimurium , Spleen/pathology , Coinfection/microbiology , Liver/pathology , Schistosoma mansoni/physiology , Salmonella Infections/pathology , Fibrosis
6.
J Microbiol Immunol Infect ; 55(4): 757-765, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35654701

ABSTRACT

BACKGROUND: Schistosomiasis is one of the most devastating tropical diseases in the world. Currently, praziquantel (PZQ) represents the best pharmacological option for the treatment of schistosomiasis as it effectively kills the worm. However, the inability to reverse established liver damages often makes treatment futile. In the current study, we investigate whether combining the use of wogonin, a compound that was found to be liver-protective, with PZQ can attribute to the greatest beneficial effect in Schistosoma mansoni-infected mice. METHODS: To determine the protective effect of PZQ-wogonin treatment on S. manosni-infected mice, histopathological analysis was done to evaluate the granuloma size and fibrotic areas in the liver. Western blotting was performed to analyze several injuries-related markers including fibrotic markers, inflammasomes, and apoptotic markers. Scanning electron microscopy was done to evaluate the effect of wogonin on the worms, and the worm and egg burden was calculated. RESULTS: Our results showed that PZQ-wogonin treatment significantly improved liver histopathology of S. mansoni-infected mice. Further analysis showed that PZQ-wogonin combinations are more effective in reducing fibrosis, inflammation, and apoptosis in the liver than that of individual drug use. Furthermore, our results revealed that wogonin is anthelmintic; and it works better with PZQ in reducing hepatic egg burden, further lessen the disease progression. CONCLUSION: In general, this combinatorial strategy may represent a new and effective approach to schistosomiasis treatment.


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Schistosomiasis , Animals , Flavanones , Liver , Mice , Praziquantel , Schistosoma mansoni
7.
J Microbiol Immunol Infect ; 55(4): 634-642, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717525

ABSTRACT

BACKGROUND: Elizabethkingia anophelis is an opportunistic pathogen that infects newborns and immunocompromised patients. Because the infection is associated with high mortality as a result of its intrinsic resistance to antibiotics, alternative treatment methods are needed. Our previous study successfully isolated the world's first E. anophelis phage, TCUEAP1, which showed beneficial protection to E. anophelis-infected mice. More new bacteriophages are needed in order to provide sufficient choices to combat E. anophelis infections. METHODS: In the current study, two new phages infecting E. anophelis were isolated from wastewater and were designated as TCUEAP2 and TCUEAP3. Further experiments, namely, transmission electron microscopy (TEM), infection assay, host-range analysis, and sequencing were performed to determine their biological and genomic characteristics. RESULTS: TEM analysis revealed that both TCUEAP2 and TCUEAP3 possess an icosahedral head with a non-contractile tail, and belong to the Siphoviridae family. Further experiments revealed that TCUEAP3 has a longer latent period and higher burst size compared to TCUEAP2. Host range analysis showed that both TCUEAP2 and TCUEAP3 have a narrow host range, infecting only their respective hosts. The genomic size of phage TCUEAP2 was 42,403 bps containing 61 predicted open reading frames (ORFs), whereas the genome size of TCUEAP3 was 37,073 bps containing 40 predicted ORFs. CONCLUSION: Due to the distinct biological characteristics of TCUEAP2 and TCUEAP3, they may be satisfactory for clinical uses such as preparation of phage cocktails or decontamination in clinical settings.


Subject(s)
Bacteriophages , Flavobacteriaceae Infections , Flavobacteriaceae , Animals , Genome, Viral , Genomics , Mice
8.
Front Pharmacol ; 13: 853818, 2022.
Article in English | MEDLINE | ID: mdl-35370629

ABSTRACT

Septicemia is a severe inflammatory response caused by the invasion of foreign pathogens. Severe sepsis-induced shock and multiple organ failure are the two main causes of patient death. The overexpression of many proinflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, is closely related to severe sepsis. Although the treatment of sepsis has been subject to many major breakthroughs of late, the treatment of patients with septic shock is still accompanied by a high mortality rate. In our previous research, we used computer simulations to design the multifunctional peptide KCF18 that can bind to TNF-α, IL-1ß, and IL-6 based on the binding regions of receptors and proinflammatory cytokines. In this study, proinflammatory cytokines were used to stimulate human monocytes to trigger an inflammatory response, and the anti-inflammatory ability of the multifunctional KCF18 peptide was further investigated. Cell experiments demonstrated that KCF18 significantly reduced the binding of proinflammatory cytokines to their cognate receptors and inhibited the mRNA and protein expressions of TNF-α, IL-1ß, and IL-6. It could also reduce the expression of reactive oxygen species induced by cytokines in human monocytes. KCF18 could effectively decrease the p65 nucleus translocation induced by cytokines, and a mice endotoxemia experiment demonstrated that KCF18 could reduce the expression of IL-6 and the increase of white blood cells in the blood stimulated by lipopolysaccharides. According to our study of tissue sections, KCF18 alleviated liver inflammation. By reducing the release of cytokines in plasma and directly affecting vascular cells, KCF18 is believed to significantly reduce the risk of vascular inflammation.

9.
Parasitol Int ; 88: 102553, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35124287

ABSTRACT

Cryptosporidium spp. is a group of protozoans that cause diarrheal disease in both humans and animals. In Taiwan, very little information is available about the epidemiology of Cryptosporidium spp. in domesticated animals, especially in Eastern Taiwan where agriculture is one of the main industries. Therefore, this study aimed to investigate the occurrence of Cryptosporidium spp. in livestock in Hualien Country of Eastern Taiwan and identify their genotypes. Excrements from dogs (n = 81), cattle (n = 156), and pigs (n = 142) were randomly collected from different pastures or farm in Hualien Country. Microscopic examination and nested PCR were performed on all samples and both showed identical results, with 4.94% (4/81) of dogs, 24.36% (38/156) of cattle, and 16.20% (23/142) of pigs being infected with Cryptosporidium species. Positive samples were then sequenced and analyzed. DNA sequencing revealed that all four positive samples isolated from dogs were Cryptosporidium canis (C. canis); 38 positive samples from cattle were identified as C. bovis (8/38), C. canis (1/38), C. ryanae (4/38), and C. scrofarum (25/38); and 22 positive samples isolated from pigs were identified as C. scrofarum while one was identified as C. suis. In addition, the infective rates of animals from indoor farms (57.14% of all positive samples) are much higher than the rates from pastures. This study provided evidence of the occurrence of Cryptosporidium spp. in Hualien country, and farming conditions largely affect their infection rates. Therefore, precautions should be made to control Cryptosporidium spp. transmission.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium , Swine Diseases , Animals , Cattle , Cattle Diseases/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Dogs , Feces , Genotype , Livestock , Prevalence , Swine , Swine Diseases/epidemiology , Taiwan/epidemiology
10.
Entropy (Basel) ; 24(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205552

ABSTRACT

Studying heart rate dynamics would help understand the effects caused by a hyperkinetic heart in patients with hyperthyroidism. By using a multiscale entropy (MSE) analysis of heart rate dynamics derived from one-channel electrocardiogram recording, we aimed to compare the system complexity of heart rate dynamics between hyperthyroid patients and control subjects. A decreased MSE complexity index (CI) computed from MSE analysis reflects reduced system complexity. Compared with the control subjects (n = 37), the hyperthyroid patients (n = 37) revealed a significant decrease (p < 0.001) in MSE CI (hyperthyroid patients 10.21 ± 0.37 versus control subjects 14.08 ± 0.21), sample entropy for each scale factor (from 1 to 9), and high frequency power (HF) as well as a significant increase (p < 0.001) in low frequency power (LF) in normalized units (LF%) and ratio of LF to HF (LF/HF). In conclusion, besides cardiac autonomic dysfunction, the system complexity of heart rate dynamics is reduced in hyperthyroidism. This finding implies that the adaptability of the heart rate regulating system is impaired in hyperthyroid patients. Additionally, it might explain the exercise intolerance experienced by hyperthyroid patients. In addition, hyperthyroid patients and control subjects could be distinguished by the MSE CI computed from MSE analysis of heart rate dynamics.

11.
J Microbiol Immunol Infect ; 55(3): 503-526, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34330662

ABSTRACT

BACKGROUND: Macrophages play crucial roles in immune responses during the course of schistosomal infections. METHODS: We currently investigated influence of immunocompetent changes in macrophages via microarray-based analysis, mRNA expression analysis, detection of serum cytokines, and subsequent evaluation of the immune phenotypes following the differentiation of infection-induced lymphocytes in a unique T1/T2 double-transgenic mouse model. RESULTS: The gradual upregulation of genes encoding YM1, YM2, and interleukin (IL)-4/IL-13 receptors in infected mice indicated the role of type 2 alternatively activated macrophages (M2, AAMφs) in immune responses after Schistosoma japonicum egg production. FACS analysis showed that surface markers MHC class II (IA/IE) and CD8α+ of the macrophages also exhibited a dramatic change at the various time points before and after egg-production. The transgenic mouse experiments further demonstrated that the shifting of macrophage phenotypes influenced the percentage of helper T (Th)-2 cells, which was observed to be higher than that of Th1 cells, which increased only at 3 and 5 weeks post-infection. The differentiation of effector B cells showed a similar but more significant trend toward type-2 immunity. CONCLUSION: These results suggest that the infection of mice with S. japonicum resulted in a final Th2- and Be2-skewed immune response. This may be due to phenotypic changes in the macrophages. The influence of alternatively activated macrophages was also activated by S. japonicum egg production. This study elucidated the existence of variations in immune mechanisms at the schistosome infection stages.


Subject(s)
Macrophages , Schistosomiasis japonica , Animals , Immunity , Macrophages/immunology , Mice , Mice, Inbred C57BL , Phenotype , Schistosomiasis japonica/immunology , Th1 Cells , Th2 Cells
12.
Parasitol Int ; 86: 102446, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34481947

ABSTRACT

After many years of the excessive use of praziquantel against Schistosoma mansoni (S. mansoni), it has already led to the development of drug resistance. While schistosomiasis is still affecting millions of people every year, vaccination may be one realistic alternative way to control the disease. Currently, S. mansoni 14-kDa fatty acid-binding protein (Sm14) has shown promising results as a vaccine antigen. Yet, the use of an adjuvant may be necessary to further increase the effectiveness of the vaccine. Herein, we investigated the potential of using heat-killed Cutibacterium acnes (C. acnes) as an adjuvant for recombinant Sm14 (rSm14). Immunization of mice with C. acnes-adjuvanted rSm14 showed increased humoral immune responses, compared with mice immunized with rSm14 alone. Additionally, C. acnes-adjuvanted rSm14 vaccination provided higher protection to mice against S. mansoni infection and liver injuries. These results suggest that C. acnes increases the immunogenicity of rSm14, which leads to better protection against S. mansoni infection. Therefore, heat-killed C. acnes may be a promising adjuvant to use with rSm14.


Subject(s)
Fatty Acid Transport Proteins/immunology , Helminth Proteins/immunology , Immunogenicity, Vaccine , Propionibacteriaceae/chemistry , Schistosoma mansoni/immunology , Schistosomiasis mansoni/prevention & control , Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Female , Male , Mice , Mice, Inbred BALB C
13.
J Microbiol Immunol Infect ; 55(2): 314-322, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34167886

ABSTRACT

BACKGROUND/PURPOSE: Schistosomiasis is an important tropical disease caused by Schistosoma. Although the pathogenesis of liver fibrosis has been intensively studied, the choice of effective treatment is still inadequate. In this study, we aimed to investigate the potential of using Casticin to treat Schistosoma mansoni-induced liver fibrosis. METHODS: BALB/c mice were divided into three groups - control, infection, and treatment group. The infection and treatment group were percutaneously infected with 100-120 cercariae. Mice from the treatment group were treated with 20 mg/kg/day Casticin for 14 consecutive days to investigate the potential protective effects of Casticin. Mice were sacrificed and were used for histological, RNA, protein, and parasite burden analysis. RESULTS: Our results showed that hepatic fibrosis was significantly attenuated, as indicated by histology and reduction of fibrotic markers such as collagen AI, transforming growth factor ß (TGF-ß), and α-smooth muscle actin (α-SMA). Furthermore, Casticin treatment significantly reduced worm burden. Anthelmintic effect of Casticin was also observed by scanning electron microscopy. CONCLUSION: Collectively, our study suggested that Casticin may be a beneficial candidate in treating S. mansoni infection.


Subject(s)
Anthelmintics , Anti-Infective Agents , Schistosomiasis mansoni , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anti-Infective Agents/pharmacology , Flavonoids , Humans , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Mice, Inbred BALB C , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology
14.
Int J Parasitol ; 52(5): 275-284, 2022 04.
Article in English | MEDLINE | ID: mdl-34875254

ABSTRACT

Schistosomiasis is a tropical parasitic disease, in which the major clinical manifestation includes hepatosplenomegaly, portal hypertension, and organs fibrosis. Clinically, treatment of schistosomiasis involves the use of praziquantel (PZQ) and supportive care, which does not improve the patient's outcome as liver injuries persist. Here we show the beneficial effects of using PZQ in combination with Schisandrin B (Sch B). Concomitant treatment with PZQ and Sch B resulted in a significant improvement of hepatosplenomegaly and fibrosis, compared with single-agent treatment. We also demonstrated that PZQ-Sch B treatment ameliorates injuries in the lungs and intestine better than the sole use of PZQ or Sch B. In addition, PZQ-Sch B treatment improves the survival of S. mansoni-infected mice, and the treatment combination yields better therapeutic outcomes, as indicated by a partial improvement in neurological function. These results were accompanied by a reduction in neurological injuries. Collectively, we suggest that PZQ-Sch B concomitant therapy may be useful to alleviate schistosomiasis-associated liver injuries and prevent systemic complications.


Subject(s)
Anthelmintics , Polycyclic Compounds , Schistosomiasis mansoni , Animals , Anthelmintics/pharmacology , Cyclooctanes , Lignans , Mice , Polycyclic Compounds/pharmacology , Polycyclic Compounds/therapeutic use , Praziquantel , Schistosoma mansoni , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology
15.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209998

ABSTRACT

Acne vulgaris, which is mostly associated with the colonization of Cutibacterium acnes (C. acnes), is a common skin inflammatory disease in teenagers. However, over the past few years, the disease has extended beyond childhood to chronically infect approximately 40% of adults. While antibiotics have been used for several decades to treat acne lesions, antibiotic resistance is a growing crisis; thus, finding a new therapeutic target is urgently needed. Studies have shown that phage therapy may be one alternative for treating multi-drug-resistant bacterial infections. In the present study, we successfully isolated a C. acnes phage named TCUCAP1 from the skin of healthy volunteers. Morphological analysis revealed that TCUCAP1 belongs to the family Siphoviridae with an icosahedral head and a non-contractile tail. Genome analysis found that TCUCAP1 is composed of 29,547 bp with a G+C content of 53.83% and 56 predicted open reading frames (ORFs). The ORFs were associated with phage structure, packing, host lysis, DNA metabolism, and additional functions. Phage treatments applied to mice with multi-drug-resistant (MDR) C.-acnes-induced skin inflammation resulted in a significant decrease in inflammatory lesions. In addition, our attempt to formulate the phage into hydroxyethyl cellulose (HEC) cream may provide new antibacterial preparations for human infections. Our results demonstrate that TCUCAP1 displays several features that make it an ideal candidate for the control of C. acnes infections.


Subject(s)
Acne Vulgaris/therapy , Phage Therapy/methods , Propionibacterium acnes/virology , Siphoviridae/classification , Whole Genome Sequencing/methods , Acne Vulgaris/microbiology , Animals , Base Composition , Cellulose/chemistry , Disease Models, Animal , Drug Compounding , Drug Resistance, Multiple, Bacterial , Genome Size , Genome, Viral , Healthy Volunteers , Humans , Injections, Intradermal , Mice , Open Reading Frames , Phylogeny , Propionibacterium acnes/physiology , Siphoviridae/genetics , Siphoviridae/isolation & purification , Skin/virology
16.
Acta Trop ; 222: 106033, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34224719

ABSTRACT

Sm28GST is one of the candidate antigens for Schistosoma mansoni vaccine. Already Sm28GST vaccine formulations have shown to be protective against S. mansoni infection. Currently, efforts have been put into finding an adjuvant to enhance the immunity induced by Sm28GST. In the present work, we investigated whether heat-killed Propionibacterium acnes can be served as a potential adjuvant for recombinant Sm28GST (rSm28GST) antigen. As the results showed, P. acnes successfully modulated the Th1 humoral immune response induced by rSm28GST. Stronger Th1 cytokines responses were also observed in mice immunized with P. acnes-adjuvanted rSm28GST. Immunization of mice with P. acnes-adjuvanted rSm28GST was able to reduce worm burden and hepatic egg burden by 54.20 and 73.61%. Reduced granuloma size and count, as well as improved liver histology, were seen in P. acnes-adjuvanted rSm28GST immunized mice. These data suggest that P. acnes may evoke a stronger rSm28GST-induced immune response, higher resistance to S. mansoni infection, and more profound protection against S. mansoni-induced liver damages.


Subject(s)
Antigens, Helminth/immunology , Glutathione Transferase/immunology , Propionibacterium acnes , Schistosomiasis mansoni , Vaccines/immunology , Adjuvants, Immunologic , Animals , Antibodies, Helminth , Hot Temperature , Mice , Schistosoma mansoni/immunology , Schistosomiasis mansoni/prevention & control , Th1 Cells/immunology
17.
PLoS Negl Trop Dis ; 15(6): e0009554, 2021 06.
Article in English | MEDLINE | ID: mdl-34161342

ABSTRACT

Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lignans/pharmacology , Liver Cirrhosis/drug therapy , Polycyclic Compounds/pharmacology , Schistosomiasis mansoni/drug therapy , Animals , Apoptosis/drug effects , Cyclooctanes/pharmacology , Inflammasomes/drug effects , Liver Cirrhosis/parasitology , Male , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Schistosoma mansoni/drug effects , Spleen/drug effects , Spleen/parasitology
18.
Iran J Pharm Res ; 20(4): 300-314, 2021.
Article in English | MEDLINE | ID: mdl-35194448

ABSTRACT

Currently, there are no effective treatments for liver diseases. Treatment usually involves controlling complications and supportive care. As liver injuries also affect other organs such as the spleen, kidney, and brain due to their anatomical and physiological relationships, finding an effective treatment is urgently needed. This research aimed to evaluate the therapeutic effect of Schisandrin B (Sch B) in the liver and other organs in thioacetamide (TAA)-intoxicated mice. In this study, mice were exposed to a single intraperitoneal injection of 200 mg/kg TAA to induce hepatitis. Following Sch B (20 mg/kg/day, 28 consecutive days) treatment, biochemistry analysis and histopathological examination of different organs were performed, in addition to western blotting and flow cytometry to evaluate the involvement of inflammasomes and apoptotic proteins. Our results showed that administration of Sch B protected against TAA-induced damages, and it disparately affected inflammasome activation and apoptosis in different organs. Furthermore, Sch B treatment improved organ function, as indicated by the improvement of serum biochemical parameters. Collectively, our findings reveal a beneficial effect of Sch B on different organ damages in mice intoxicated with TAA.

19.
J Microbiol Immunol Infect ; 54(4): 718-727, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32505531

ABSTRACT

BACKGROUND: Giardia duodenalis is a zoonotic protozoan parasite causing diarrhea through waterborne or fecal-oral infection. The cysts can live in the drinking water and cause pandemic diseases. In Taiwan, very little information is available regarding the epidemiology of G. duodenalis in domestic animals. METHODS: Fecal samples were collected from cattle (n = 156) and pigs (n = 141) in Hualien country, eastern Taiwan. Detection and genotyping were done by microscopy examination of fecal samples and amplification of the ß-giardin gene using nested PCR. RESULTS: The prevalence of G. duodenalis infection was 19.87% for cattle (31/156) and 4.26% for pigs (6/141). Using nested PCR, 30 infected samples found in cattle belonged to Assemblage E, and one sample belonged to Assemblage D. For pigs, four samples belonged to Assemblage E, one belonged to Assemblage D, and another one belonged to Assemblage A. In addition, these results showed that G. duodenalis Assemblage A was detected in pigs and may cause zoonotic transmission. CONCLUSION: This is the first epidemiological investigation of G. duodenalis infection in animals in Hualien, Taiwan. These results could provide epidemiological information for disease control and public health protection.


Subject(s)
Genotype , Giardia lamblia/classification , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/veterinary , Animals , Cattle/parasitology , Diarrhea/parasitology , Feces/parasitology , Giardia lamblia/isolation & purification , Phylogeny , Prevalence , Protozoan Proteins/genetics , Swine/parasitology , Taiwan/epidemiology , Zoonoses/epidemiology , Zoonoses/parasitology
20.
Parasitol Int ; 80: 102231, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33147498

ABSTRACT

Angiostrongylus cantonensis is one of the most widespread parasites causing central nervous system (CNS) diseases in mammals. Since the mitochondrion is an essential cell organelle responsible for both physiological and pathological processes, its dysfunction might lead to inflammation and multiple disorders. In this study we aimed to investigate the changes in mitochondrial dynamics that occur in the mouse brain upon infection with A. cantonensis, using molecular biology techniques such as polymerase chain reaction (PCR), western blot analysis, transmission electron microscopy (TEM), and different staining methods. Here, we show that mouse brain infected with A. cantonensis exhibits altered mitochondrial dynamics, including fission, fusion, and biogenesis. Additionally, we demonstrate that caspases and B-cell lymphoma 2 (BCL-2) were significantly upregulated in A. cantonensis-infected brain. These results are indicative of the occurrence of apoptosis during A. cantonensis infection, which was further confirmed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These findings suggest the change in mitochondrial dynamics in A. cantonensis-infected brain, providing another point of view on the pathogenesis of meningoencephalitis caused by A. cantonensis infection.


Subject(s)
Angiostrongylus cantonensis/physiology , Brain/parasitology , Mitochondrial Dynamics , Strongylida Infections/physiopathology , Angiostrongylus cantonensis/growth & development , Animals , Apoptosis , Blotting, Western , Brain/enzymology , Brain/physiopathology , Brain/ultrastructure , Larva/growth & development , Larva/physiology , Male , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction , Staining and Labeling/methods , Strongylida Infections/parasitology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...